How a Differential Pressure Gauge Can Help to Maintain the Air Quality in a Compressed Air System

How a Differential Pressure Gauge Can Help to Maintain the Air Quality in a Compressed Air System

What is differential pressure?

Differential pressure (DP) refers to the difference between two applied points of pressure. When this value tends to fluctuate significantly in a process system, it can be an indication that the component is in need of repair, replacement or maintenance. This is why, it becomes important to understand how to read differential pressure to keep functioning at optimal levels without the equipment breaking down.

What is a differential pressure gauge?

A differential pressure gauge is an instrument that is used to measure the differential pressure in a system and display the results visually. It can monitor the status of the air filter, which is an integral part of most compressed air systems. While the air filter performs a key function in removing contaminants entering the system, it creates a resulting change in pressure between the entry and exit points of the system. With passing time, these points accumulate dirt and get clogged, thus increasing the differential pressure.

A differential pressure gauge can track the changes in differential pressure in the system and alert you when it has reached a point when the filter must be replaced. This is a major benefit in operating an air system, as it can help minimize downtime from a malfunctioning and conduct timely maintenance as and when required.

Here is a look at some important facts about using differential pressure gauges:

  • Although a differential pressure gauge is an indicator of air quality, it does not directly influence the quality of the air that goes out from the system. However, it checks the condition of the air filter in the system and plays a large role in keeping it healthy.
  • If you have a compressed air filter fitted with a differential pressure indicator or monitor, keep in mind that this differs from a true differential pressure guage. Such devices are not as accurate or calibrated as the latter.
  • Be careful not to fall into the trap of thinking that you must only change your compressed air system’s filter when there is an increase in the differential pressure. A marked fluctuation in differential pressure means that the air compressor has to function at higher pressures for prolonged periods of time to overcome the same. So, fluctuations can occur regardless of the condition of the air filter. Besides, any wear and tear in the filter can sometimes prevent the differential pressure from showing a change, despite being clogged up.

A differential pressure gauge is a valuable tool to monitor the condition of the air filter in a compressed air system, which is instrumental in ensuring that the system maintains high standards of air quality.

VEMC is ISO 9001:2015 certified and a pioneer in the field of electromechanical engineering products, allied equipment, and services. We are also an authorized dealer of Elgi air compressors. With over 72 years of industry expertise, we aim to offer you end-to-end solutions and specialized support in this space. Please contact us on +91 98199 07445, and we will be happy to help you meet your requirements.

5 benefits of regularly changing compressed air filter elements

5 benefits of regularly changing compressed air filter elements

Compressed air is indispensable to a vast number of manufacturing and industrial applications including pneumatic tools, petrochemicals, and food processing, among others. Most compressor systems are fitted with a filtration system to optimize the movement of the air and minimize the risk of contamination. To keep the system functioning smoothly, it is necessary to conduct regular maintenance and replace the components that have become worn out. Parts of the air filtration system in the compressor have a limited shelf life and in order to keep working effectively, they must be checked and replaced periodically. Let’s take a look at five benefits that changing the compressor’s air filter elements regularly provides:

1. Maintain a high quality of compressed air

Changing the air filters regularly makes for a safer, cleaner work environment without the risk of undesirable contaminants that can cause damage to your staff and equipment. To keep the air filtration system unclogged and functioning at peak efficiency, you need to change the air filters as often as required. Check with the manufacturer to know what the recommended frequency of your filters is.

2. Protect adsorption dryer beds

In some systems, using fresh new filters enables the adsorption dryer beds to operate at their most efficient levels. With reduced particulate matter present in the airflow over these, they are going to remain healthy more easily and offer maximum advantage.

3. Decrease operational costs

Changing the air filter parts regularly cuts down on the risk of running into problems with the entire system which can result in downtime, costly repairs, and all-around inefficiency. Without proper maintenance of the air filtration system, the compressor has to work harder to deliver the required airflow. This puts a burden on the compressor and makes it consume more energy and be susceptible to damage and lowered durability.

4. More productivity and profitability

An outcome of conducting consistent maintenance and changing the air filters is that you will benefit from a boost in efficiency, thereby resulting in increased productivity as well as profitability for your business.

5. Sense of assurance

Changing the air filtration parts of your compressor system keeps everything operating much more smoothly than if you did not. It is a habit that gives you peace of mind and a sense of assurance that your system is running at the best of its ability in the safest way possible. It reduces the anxiety and inconvenience of unexpected downtime. This in itself is invaluable when it comes to the daily operation of your business or factory.

These benefits far outweigh the consequences of not changing the air filter parts regularly as required. So, keep them in mind when maintaining your air compressor system!

VEMC is ISO 9001:2015 certified and a pioneer in the field of electromechanical engineering products, allied equipment, and services. With more than 72 years of industry experience, we provide best-in-class solutions and customized support in this field. We also provide a number of Elgi air compressors. Contact us at +919819907445 and we would be happy to help you determine the right air compressor for your needs.

Here’s What You Need to Know About ISO Classes for Compressed Air Quality

What You Need to Know About ISO Classes for Compressed Air Quality

We’ve heard the term “ISO standards” quite frequently. But what exactly are they, and why are they so important? Let’s take a look at the concept. The International Standards Organisation (ISO) is a non-governmental body made up of a network of institutes from 159 different countries. ISO is the world’s largest developer and publisher of international standards and is accepted universally.

Compressed air is an indispensable utility that is used widely across different industries. But, compressed air is not all of uniform quality. Some uses, such as pharmaceutical production and food handling, call for impeccable quality and cleanliness of the air. In other cases, the primary objective may be to ensure the lifetime and reliability of industrial tools that are powered by air. The ISO standards play a key role in determining the level of air purity required for your particular application. Meeting ISO standards is also important in maintaining and protecting the quality of your production. In some cases, not complying with them can lead to heavy penalties or even your production facility being shut down!

The ISO 8573 air quality standards and ISO 12500 compressed air filter standards help lay a sound foundation for selecting the right air treatment products. ISO8573 is the compressed air quality standard and comprises nine separate parts — part 1 for quality requirements of the compressed air, and parts 2 to 9 for the methods of testing for a range of contaminants.

Compressed air contains contaminants like moisture and pollutants, and must be filtered according to the application’s requirements. Usually, the purer the air must be, the more costly it is to produce. This is why it is crucial to choose the right levels of air purity in order to reduce costs and benefit the environment.

The ISO 8573-1:2010 is a useful tool that makes the task of choosing the right air purity for your application that much easier. It ranks the acceptable levels of different types of contaminants as classes.

The ISO 8573-1:2010 standard is divided into three groups of contaminants—solid particles, water (including liquid and vapor), and oil. Each of these categories is further classified into ten different purity classes — eight for particulates, ten for water, and five for oil. The lower the assigned number to a category, the higher the air purity requirement for it. For example, class 5 would require far less air purity than class 1.

Now that you know how to match the ISO class to the compressed air quality required, how will you select a filter? The answer is simple — just find the particular ISO class on the filter. Once you identify the ISO class for your particular task, planning the equipment you would need becomes much easier.

VEMC provides a variety of Elgi air compressors. For more help with understanding ISO classes for compressed air quality, contact us on +919819907445 and we would be happy to assist you. VEMC is ISO 9001:2015 certified and is a pioneer in the field of electromechanical engineering products, allied equipment, and services.

How To Achieve Efficiency, Performance, And Quality Compressed Air Strategy

Compressed air is a common source of energy that is used across several industries, including manufacturing. Compressed air can also prove to be quite expensive, often consuming more energy than most equipment in a manufacturing plant. The good news is that compressed air systems can be greatly improved in efficiency, performance, and quality with the right strategy. 

There are three main components of the air compression system that influences performance, efficiency and quality. Let’s take a look at them.

Composition of the air intake

Clean air intake by the system allows the compressed air to move smoothly through it. Contaminated air is impure, so a build-up of it over time leads to wear and tear, and makes the storage capacity suffer.

Temperature of the air intake

The cooler the air, the less energy is required to compress it. The temperature of the intake air determines its density.

Humidity

Moisture can harm the air compression system if it collects inside because it causes the parts to rust. It can also catalyse wear and tear, and leaks while reducing the storage capacity. Making sure the air is dry will more likely prevent such damage to the system.

You can also optimize the design of the air compression system to increase its efficiency. There are three ways to do this:

Cooldown intake air

Since the energy required to compress cool air is less than that for warmer air, you can move the system into a shaded area to lower the temperature of the intake air.

Straighten the path

Sharp bends or narrow delivery lines can increase friction and the number of pressure drops in the system. Implement a straighter path into the system to get higher pressure, thus reducing the overall amount of energy required to compress the air.

Use several small compressors

Larger air compressors consume more energy per unit while working with only a partial load, thus making it inefficient. Try using multiple smaller air compressors with sequencing controls so that you can shut down portions of the system just by turning off some of the compressors.

Other practices that help your air compressor perform at optimal efficiency are:

Maintaining the compressor

Regularly check the air compressor system for any leaks, premature wear and tear, and the build-up of contaminants. Ensure that procedures are in place and train employees to operate the system properly.

Changing filters

Filters make sure that only the cleanest air reaches users. However, these filters may get clogged up with dirt, grease, dust, and other contaminants. Clean them often so that the system does not consume more energy to function due to a pressure drop as a result of clogged filters. You can also deploy longer-life and low pressure drop filters of a size suited to the maximum flow rate.The above practices will go a long way in achieving efficiency, performance, and quality of your air compressor system. VEMC offers a number of ELGi air compressors. Contact us on +919819907445 and we would be happy to help you determine the right air compressor for your needs. VEMC is ISO 9001:2015 certified and is a pioneer in the field of electromechanical engineering products, allied equipment, and services